Back to Search Start Over

Inflation driven by scalar field and solid matter

Authors :
Mészáros, Peter
Source :
IJMPD, Vol 28, No. 04, (2019) 1950072
Publication Year :
2017

Abstract

Solid inflation is a cosmological model where inflation is driven by fields which enter the Lagrangian in the same way as body coordinates of a solid matter enter the equation of state, spontaneously breaking spatial translational and rotational symmetry. We construct a simple generalization of this model by adding a scalar field with standard kinetic term to the action. In our model the scalar power spectrum and the tensor-to-scalar ratio do not differ from the ones predicted by the solid inflation qualitatively, if the scalar field does not dominate the solid matter. The same applies also for the size of the scalar bispectrum measured by the non-linearity parameter, although our model allows it to have different shapes. The tensor bispectra predicted by the two models do not differ from each other in the leading order of the slow-roll approximation. In the case when contribution of the solid matter to the stress-energy tensor is much smaller than the contribution from the scalar field, the tensor-to-scalar ratio and the non-linearity parameter are amplified by factors $\epsilon^{-1}$ and $\epsilon^{-2}$ respectively.<br />Comment: 23 pages, 3 figures

Details

Database :
arXiv
Journal :
IJMPD, Vol 28, No. 04, (2019) 1950072
Publication Type :
Report
Accession number :
edsarx.1711.01040
Document Type :
Working Paper
Full Text :
https://doi.org/10.1142/S021827181950072X