Back to Search Start Over

Conformal blocks, $q$-combinatorics, and quantum group symmetry

Authors :
Karrila, Alex
Kytölä, Kalle
Peltola, Eveliina
Source :
Ann. Inst. Henri Poincar\'e D, 6(3):449-487, 2019
Publication Year :
2017

Abstract

In this article, we find a $q$-analogue for Fomin's formulas. The original Fomin's formulas relate determinants of random walk excursion kernels to loop-erased random walk partition functions, and our formulas analogously relate conformal block functions of conformal field theories to pure partition functions of multiple SLE random curves. We also provide a construction of the conformal block functions by a method based on a quantum group, the $q$-deformation of $\mathfrak{sl}_2$. The construction both highlights the representation theoretic origin of conformal block functions and explains the appearance of $q$-combinatorial formulas.<br />Comment: 24 pages, 7 figures. v3: minor improvements. Accepted for publication in Annales de l'Institut Henri Poincar\'e D

Details

Database :
arXiv
Journal :
Ann. Inst. Henri Poincar\'e D, 6(3):449-487, 2019
Publication Type :
Report
Accession number :
edsarx.1709.00249
Document Type :
Working Paper
Full Text :
https://doi.org/10.4171/AIHPD/88