Back to Search
Start Over
Conformal blocks, $q$-combinatorics, and quantum group symmetry
- Source :
- Ann. Inst. Henri Poincar\'e D, 6(3):449-487, 2019
- Publication Year :
- 2017
-
Abstract
- In this article, we find a $q$-analogue for Fomin's formulas. The original Fomin's formulas relate determinants of random walk excursion kernels to loop-erased random walk partition functions, and our formulas analogously relate conformal block functions of conformal field theories to pure partition functions of multiple SLE random curves. We also provide a construction of the conformal block functions by a method based on a quantum group, the $q$-deformation of $\mathfrak{sl}_2$. The construction both highlights the representation theoretic origin of conformal block functions and explains the appearance of $q$-combinatorial formulas.<br />Comment: 24 pages, 7 figures. v3: minor improvements. Accepted for publication in Annales de l'Institut Henri Poincar\'e D
- Subjects :
- Mathematical Physics
Primary: 81T40. Secondary: 05B20, 16T05, 60D05
Subjects
Details
- Database :
- arXiv
- Journal :
- Ann. Inst. Henri Poincar\'e D, 6(3):449-487, 2019
- Publication Type :
- Report
- Accession number :
- edsarx.1709.00249
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.4171/AIHPD/88