Back to Search Start Over

Hierarchical Orthogonal Matrix Generation and Matrix-Vector Multiplications in Rigid Body Simulations

Authors :
Fang, Fuhui
Huang, Jingfang
Huber, Gary
McCammon, J. Andrew
Zhang, Bo
Publication Year :
2017

Abstract

In this paper, we apply the hierarchical modeling technique and study some numerical linear algebra problems arising from the Brownian dynamics simulations of biomolecular systems where molecules are modeled as ensembles of rigid bodies. Given a rigid body $p$ consisting of $n$ beads, the $6 \times 3n$ transformation matrix $Z$ that maps the force on each bead to $p$'s translational and rotational forces (a $6\times 1$ vector), and $V$ the row space of $Z$, we show how to explicitly construct the $(3n-6) \times 3n$ matrix $\tilde{Q}$ consisting of $(3n-6)$ orthonormal basis vectors of $V^{\perp}$ (orthogonal complement of $V$) using only $\mathcal{O}(n \log n)$ operations and storage. For applications where only the matrix-vector multiplications $\tilde{Q}{\bf v}$ and $\tilde{Q}^T {\bf v}$ are needed, we introduce asymptotically optimal $\mathcal{O}(n)$ hierarchical algorithms without explicitly forming $\tilde{Q}$. Preliminary numerical results are presented to demonstrate the performance and accuracy of the numerical algorithms.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1708.08427
Document Type :
Working Paper