Back to Search Start Over

The prior can generally only be understood in the context of the likelihood

Authors :
Gelman, Andrew
Simpson, Daniel
Betancourt, Michael
Publication Year :
2017

Abstract

A key sticking point of Bayesian analysis is the choice of prior distribution, and there is a vast literature on potential defaults including uniform priors, Jeffreys' priors, reference priors, maximum entropy priors, and weakly informative priors. These methods, however, often manifest a key conceptual tension in prior modeling: a model encoding true prior information should be chosen without reference to the model of the measurement process, but almost all common prior modeling techniques are implicitly motivated by a reference likelihood. In this paper we resolve this apparent paradox by placing the choice of prior into the context of the entire Bayesian analysis, from inference to prediction to model evaluation.<br />Comment: 13 pages

Subjects

Subjects :
Statistics - Methodology

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1708.07487
Document Type :
Working Paper
Full Text :
https://doi.org/10.3390/e19100555