Back to Search Start Over

Towards the Automatic Anime Characters Creation with Generative Adversarial Networks

Authors :
Jin, Yanghua
Zhang, Jiakai
Li, Minjun
Tian, Yingtao
Zhu, Huachun
Fang, Zhihao
Publication Year :
2017

Abstract

Automatic generation of facial images has been well studied after the Generative Adversarial Network (GAN) came out. There exists some attempts applying the GAN model to the problem of generating facial images of anime characters, but none of the existing work gives a promising result. In this work, we explore the training of GAN models specialized on an anime facial image dataset. We address the issue from both the data and the model aspect, by collecting a more clean, well-suited dataset and leverage proper, empirical application of DRAGAN. With quantitative analysis and case studies we demonstrate that our efforts lead to a stable and high-quality model. Moreover, to assist people with anime character design, we build a website (http://make.girls.moe) with our pre-trained model available online, which makes the model easily accessible to general public.<br />Comment: 16 pages, 15 figures. This paper is presented as a Doujinshi in Comiket 92, summer 2017, with the booth number 05a, East-U, Third Day

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1708.05509
Document Type :
Working Paper