Back to Search Start Over

Low-threshold optically pumped lasing in highly strained Ge nanowires

Authors :
Bao, Shuyu
Kim, Daeik
Onwukaeme, Chibuzo
Gupta, Shashank
Saraswat, Krishna
Lee, Kwang Hong
Kim, Yeji
Min, Dabin
Jung, Yongduck
Qiu, Haodong
Wang, Hong
Fitzgerald, Eugene A.
Tan, Chuan Seng
Nam, Donguk
Publication Year :
2017

Abstract

The integration of efficient, miniaturized group IV lasers into CMOS architecture holds the key to the realization of fully functional photonic-integrated circuits. Despite several years of progress, however, all group IV lasers reported to date exhibit impractically high thresholds owing to their unfavorable bandstructures. Highly strained germanium with its fundamentally altered bandstructure has emerged as a potential low-threshold gain medium, but there has yet to be any successful demonstration of lasing from this seemingly promising material system. Here, we demonstrate a low-threshold, compact group IV laser that employs germanium nanowire under a 1.6% uniaxial tensile strain as the gain medium. The amplified material gain in strained germanium can sufficiently surmount optical losses at 83 K, thus allowing the first observation of multimode lasing with an optical pumping threshold density of ~3.0 kW cm^-^2. Our demonstration opens up a new horizon of group IV lasers for photonic-integrated circuits.<br />Comment: 31 pages, 9 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1708.04568
Document Type :
Working Paper
Full Text :
https://doi.org/10.1038/s41467-017-02026-w