Back to Search Start Over

A Passivity-based Concurrent Whole-Body Control (cWBC) of Persistently Interacting Human-Exoskeleton Systems

Authors :
Moro, Federico L.
Iannacci, Niccolò
Legnani, Giovanni
Tosatti, Lorenzo Molinari
Publication Year :
2017

Abstract

This paper presents a concurrent whole-body control (cWBC) for human-exoskeleton systems that are tightly coupled at a Cartesian level (e.g., feet, hands, torso). The exoskeleton generates joint torques that i) cancel the effects of gravity on the coupled system, ii) perform a primary task (e.g., maintaining the balance of the system), and iii) exploit the kinematic redundancy of the system to amplify the forces exerted by the human operator. The coupled dynamic system is demonstrated to be passive, as its overall energy always goes dissipated until a minimum is reached. The proposed method is designed specifically to control exoskeletons for power augmentation worn by healthy operators in applications such as manufacturing, as it allows to increase the worker's capabilities, therefore reducing the risk of injuries.<br />Comment: 6 pages

Subjects

Subjects :
Computer Science - Robotics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1708.02816
Document Type :
Working Paper