Back to Search
Start Over
Specifying a positive threshold function via extremal points
- Publication Year :
- 2017
-
Abstract
- An extremal point of a positive threshold Boolean function $f$ is either a maximal zero or a minimal one. It is known that if $f$ depends on all its variables, then the set of its extremal points completely specifies $f$ within the universe of threshold functions. However, in some cases, $f$ can be specified by a smaller set. The minimum number of points in such a set is the specification number of $f$. It was shown in [S.-T. Hu. Threshold Logic, 1965] that the specification number of a threshold function of $n$ variables is at least $n+1$. In [M. Anthony, G. Brightwell, and J. Shawe-Taylor. On specifying Boolean functions by labelled examples. Discrete Applied Mathematics, 1995] it was proved that this bound is attained for nested functions and conjectured that for all other threshold functions the specification number is strictly greater than $n+1$. In the present paper, we resolve this conjecture negatively by exhibiting threshold Boolean functions of $n$ variables, which are non-nested and for which the specification number is $n+1$. On the other hand, we show that the set of extremal points satisfies the statement of the conjecture, i.e., a positive threshold Boolean function depending on all its $n$ variables has $n+1$ extremal points if and only if it is nested. To prove this, we reveal an underlying structure of the set of extremal points.
- Subjects :
- Mathematics - Combinatorics
Computer Science - Discrete Mathematics
68Q32
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1706.01747
- Document Type :
- Working Paper