Back to Search
Start Over
Matrix-product structure of repeated-root constacyclic codes over finite fields
- Publication Year :
- 2017
-
Abstract
- For any prime number $p$, positive integers $m, k, n$ satisfying ${\rm gcd}(p,n)=1$ and $\lambda_0\in \mathbb{F}_{p^m}^\times$, we prove that any $\lambda_0^{p^k}$-constacyclic code of length $p^kn$ over the finite field $\mathbb{F}_{p^m}$ is monomially equivalent to a matrix-product code of a nested sequence of $p^k$ $\lambda_0$-constacyclic codes with length $n$ over $\mathbb{F}_{p^m}$.
- Subjects :
- Computer Science - Information Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1705.08819
- Document Type :
- Working Paper