Back to Search Start Over

Engineering the thermal conductivity along an individual silicon nanowire by selective helium ion irradiation

Authors :
Zhao, Yunshan
Liu, Dan
Chen, Jie
Zhu, Liyan
Belianinov, Alex
Ovchinnikova, Olga S.
Unocic, Raymond R.
Burch, Matthew J.
Kim, Songkil
Hao, Hanfang
Pickard, Daniel S
Li, Baowen
Thong, John T L
Source :
Nature Communications 8, Article number: 15919 (2017)
Publication Year :
2017

Abstract

The ability to engineer the thermal conductivity of materials allows us to control the flow of heat and derive novel functionalities such as thermal rectification, thermal switching, and thermal cloaking. While this could be achieved by making use of composites and metamaterials at bulk scales, engineering the thermal conductivity at micro- and nano-scale dimensions is considerably more challenging. In this work we show that the local thermal conductivity along a single Si nanowire can be tuned to a desired value (between crystalline and amorphous limits) with high spatial resolution through selective helium ion irradiation with a well-controlled dose. The underlying mechanism is understood through molecular dynamics simulations and quantitative phonon-defect scattering rate analysis, where the behavior of thermal conductivity with dose is attributed to the accumulation and agglomeration of scattering centers at lower doses. Beyond a threshold dose, a crystalline-amorphous transition was observed.

Details

Database :
arXiv
Journal :
Nature Communications 8, Article number: 15919 (2017)
Publication Type :
Report
Accession number :
edsarx.1705.06845
Document Type :
Working Paper
Full Text :
https://doi.org/10.1038/ncomms15919