Back to Search Start Over

Nitrogen-doped Nanoporous Carbon Membranes Functionalized with Co/CoP Janus-type nanocrystals as Hydrogen Evolution Electrode in Both Acid and Alkaline Environment

Authors :
Wang, Hong
Min, Shixiong
Wang, Qiang
Li, Debao
Casillas, Gilberto
Ma, Chun
Li, Yangyang
Li, Zhixiong
Li, Lain-Jong
Yuan, Jiayin
Antonietti, Markus
Wu, Tom
Source :
ACS Nano, 2017, 11 (4), 4358 to 4364
Publication Year :
2017

Abstract

Self-supported electrocatalysts being generated and employed directly as electrode for energy conversion has been intensively pursued in the fields of materials chemistry and energy. Herein, we report a synthetic strategy to prepare freestanding hierarchically structured, nitrogen-doped nanoporous graphitic carbon membranes functionalized with Janus-type Co/CoP nanocrystals (termed as HNDCM-Co/CoP), which were successfully applied as a highly-efficient, binder-free electrode in hydrogen evolution reaction (HER). Benefited from multiple structural merits, such as high degree of graphitization, three-dimensionally interconnected micro-/meso-/macropores, uniform nitrogen-doping, well-dispersed Co/CoP nanocrystals as well as the confinement effect of the thin carbon layer on the nanocrystals, HNDCM-Co/CoP exhibited superior electrocatalytic activity and long-term operation stability for HER under both acid and alkaline conditions. As a proof-of-concept of practical usage, a macroscopic piece of HNDCM-Co/CoP of 5.6 cm x 4 cm x 60 um in size was prepared in our laboratory. Driven by a solar cell, electroreduction of water in alkaline condition (pH 14) was performed, and H2 has been produced at a rate of 16 ml/min, demonstrating its potential as real-life energy conversion systems.<br />Comment: 31 pages, 15 pages

Details

Database :
arXiv
Journal :
ACS Nano, 2017, 11 (4), 4358 to 4364
Publication Type :
Report
Accession number :
edsarx.1705.03756
Document Type :
Working Paper
Full Text :
https://doi.org/10.1021/acsnano.7b01946