Back to Search Start Over

The deformation quantization mapping of Poisson- to associative structures in field theory

Authors :
Kiselev, Arthemy V.
Source :
Banach Center Publications, Vol. 113, Warszawa 2017, 219--242
Publication Year :
2017

Abstract

Let $\{{\cdot},{\cdot}\}_{\boldsymbol{\mathcal{P}}}$ be a variational Poisson bracket in a field model on an affine bundle $\pi$ over an affine base manifold $M^m$. Denote by $\times$ the commutative associative multiplication in the Poisson algebra $\boldsymbol{\mathcal{A}}$ of local functionals $\Gamma(\pi)\to\Bbbk$ that take field configurations to numbers. By applying the techniques from geometry of iterated variations, we make well defined the deformation quantization map ${\times}\mapsto{\star}={\times}+\hbar\,\{{\cdot},{\cdot}\}_{\boldsymbol{\mathcal{P}}}+\bar{o}(\hbar)$ that produces a noncommutative $\Bbbk[[\hbar]]$-linear star-product $\star$ in $\boldsymbol{\mathcal{A}}$.<br />Comment: Proc. 50th Sophus Lie Seminar (26-30 September 2016, Bedlewo, Poland), 8 figures, 24 pages

Details

Database :
arXiv
Journal :
Banach Center Publications, Vol. 113, Warszawa 2017, 219--242
Publication Type :
Report
Accession number :
edsarx.1705.01777
Document Type :
Working Paper
Full Text :
https://doi.org/10.4064/bc113-0-12