Back to Search
Start Over
The deformation quantization mapping of Poisson- to associative structures in field theory
- Source :
- Banach Center Publications, Vol. 113, Warszawa 2017, 219--242
- Publication Year :
- 2017
-
Abstract
- Let $\{{\cdot},{\cdot}\}_{\boldsymbol{\mathcal{P}}}$ be a variational Poisson bracket in a field model on an affine bundle $\pi$ over an affine base manifold $M^m$. Denote by $\times$ the commutative associative multiplication in the Poisson algebra $\boldsymbol{\mathcal{A}}$ of local functionals $\Gamma(\pi)\to\Bbbk$ that take field configurations to numbers. By applying the techniques from geometry of iterated variations, we make well defined the deformation quantization map ${\times}\mapsto{\star}={\times}+\hbar\,\{{\cdot},{\cdot}\}_{\boldsymbol{\mathcal{P}}}+\bar{o}(\hbar)$ that produces a noncommutative $\Bbbk[[\hbar]]$-linear star-product $\star$ in $\boldsymbol{\mathcal{A}}$.<br />Comment: Proc. 50th Sophus Lie Seminar (26-30 September 2016, Bedlewo, Poland), 8 figures, 24 pages
Details
- Database :
- arXiv
- Journal :
- Banach Center Publications, Vol. 113, Warszawa 2017, 219--242
- Publication Type :
- Report
- Accession number :
- edsarx.1705.01777
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.4064/bc113-0-12