Back to Search
Start Over
Quaternary two-dimensional (2D) transition metal dichalcogenides (TMDs) with tunable bandgap
- Publication Year :
- 2017
-
Abstract
- Alloying/doping in two-dimensional material has been important due to wide range band gap tunability. Increasing the number of components would increase the degree of freedom which can provide more flexibility in tuning the band gap and also reduced the growth temperature. Here, we report synthesis of quaternary alloys MoxW1-xS2ySe2(1-y) using chemical vapour deposition. The composition of alloys has been tuned by changing the growth temperatures. As a result, we can tune the bandgap which varies from 1.73 eV to 1.84 eV. The detailed theoretical calculation supports the experimental observation and shows a possibility of wide tunability of bandgap.
- Subjects :
- Condensed Matter - Materials Science
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1705.01245
- Document Type :
- Working Paper