Back to Search
Start Over
Low-lying level structure of $^{56}$Cu and its implications on the rp process
- Publication Year :
- 2017
-
Abstract
- The low-lying energy levels of proton-rich $^{56}$Cu have been extracted using in-beam $\gamma$-ray spectroscopy with the state-of-the-art $\gamma$-ray tracking array GRETINA in conjunction with the S800 spectrograph at the National Superconducting Cyclotron Laboratory at Michigan State University. Excited states in $^{56}$Cu serve as resonances in the $^{55}$Ni(p,$\gamma$)$^{56}$Cu reaction, which is a part of the rp-process in type I x-ray bursts. To resolve existing ambiguities in the reaction Q-value, a more localized IMME mass fit is used resulting in $Q=639\pm82$~keV. We derive the first experimentally-constrained thermonuclear reaction rate for $^{55}$Ni(p,$\gamma$)$^{56}$Cu. We find that, with this new rate, the rp-process may bypass the $^{56}$Ni waiting point via the $^{55}$Ni(p,$\gamma$) reaction for typical x-ray burst conditions with a branching of up to $\sim$40$\%$. We also identify additional nuclear physics uncertainties that need to be addressed before drawing final conclusions about the rp-process reaction flow in the $^{56}$Ni region.<br />Comment: 8 pages, accepted for Phys. Rev. C
- Subjects :
- Nuclear Experiment
Astrophysics - High Energy Astrophysical Phenomena
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1704.07941
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevC.95.055806