Back to Search Start Over

Planar infall of CH3OH gas around Cepheus A HW2

Authors :
Sanna, A.
Moscadelli, L.
Surcis, G.
van Langevelde, H. J.
Torstensson, K. J. E.
Sobolev, A. M.
Publication Year :
2017

Abstract

Aims: In order to test the nature of an (accretion) disk in the vicinity of Cepheus A HW2, we measured the three-dimensional velocity field of the CH3OH maser spots, which are projected within 1000au of the HW2 object, with an accuracy of the order of 0.1km/s. Methods: We made use of the European VLBI Network (EVN) to image the 6.7GHz CH3OH maser emission towards Cepheus A HW2 with 4.5 milli-arcsecond resolution (3au). We observed at three epochs spaced by one year between 2013 and 2015. During the last epoch, on mid-march 2015, we benefited from the new deployed Sardinia Radio Telescope. Results: We show that the CH3OH velocity vectors lie on a preferential plane for the gas motion with only small deviations of 12+/-9 degrees away from the plane. This plane is oriented at a position angle of 134 degrees east of north, and inclined by 26 degrees with the line-of-sight, closely matching the orientation of the disk-like structure previously reported by Patel et al.(2005). Knowing the orientation of the equatorial plane, we can reconstruct a face-on view of the CH3OH gas kinematics onto the plane. CH3OH maser emission is detected within a radius of 900au from HW2, and down to a radius of about 300au, the latter coincident with the extent of the dust emission at 0.9mm. The velocity field is dominated by an infall component of about 2km/s down to a radius of 300au, where a rotational component of 4km/s becomes dominant. We discuss the nature of this velocity field and the implications for the enclosed mass. Conclusions: These findings bring direct support to the interpretation that the high-density gas and dust emission, surrounding Cepheus A HW2, trace an accretion disk.<br />Comment: 9 pages, 4 figures, 2 tables, accepted by Astronomy & Astrophysics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1704.03760
Document Type :
Working Paper
Full Text :
https://doi.org/10.1051/0004-6361/201730773