Back to Search Start Over

Global Euler obstruction, global Brasselet numbers and critical points

Authors :
Dutertre, Nicolas
Grulha Jr, Nivaldo G.
Publication Year :
2017

Abstract

Let $X \subset \Bbb{C}^n$ be an equidimensional complex algebraic set and let $f: X \to \mathbb{C}$ be a polynomial function. For each $c \in \Bbb{C}$, we define the global Brasselet number of $f$ at $c$, a global counterpart of the Brasselet number defined by the authors in a previous work, and the Brasselet number at infinity of $f$ at $c$. Then we establish several formulas relating these numbers to the topology of $X$ and the critical points of $f$.

Subjects

Subjects :
Mathematics - Algebraic Geometry

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1703.06694
Document Type :
Working Paper
Full Text :
https://doi.org/10.1017/prm.2019.30