Back to Search Start Over

On problems equivalent to (min,+)-convolution

Authors :
Cygan, Marek
Mucha, Marcin
Węgrzycki, Karol
Włodarczyk, Michał
Source :
ACM Transactions on Algorithms 2019
Publication Year :
2017

Abstract

In recent years, significant progress has been made in explaining the apparent hardness of improving upon the naive solutions for many fundamental polynomially solvable problems. This progress has come in the form of conditional lower bounds -- reductions from a problem assumed to be hard. The hard problems include 3SUM, All-Pairs Shortest Path, SAT, Orthogonal Vectors, and others. In the $(\min,+)$-convolution problem, the goal is to compute a sequence $(c[i])^{n-1}_{i=0}$, where $c[k] = $ $\min_{i=0,\ldots,k} $ $\{a[i] $ $+$ $b[k-i]\}$, given sequences $(a[i])^{n-1}_{i=0}$ and $(b[i])_{i=0}^{n-1}$. This can easily be done in $O(n^2)$ time, but no $O(n^{2-\varepsilon})$ algorithm is known for $\varepsilon > 0$. In this paper, we undertake a systematic study of the $(\min,+)$-convolution problem as a hardness assumption. First, we establish the equivalence of this problem to a group of other problems, including variants of the classic knapsack problem and problems related to subadditive sequences. The $(\min,+)$-convolution problem has been used as a building block in algorithms for many problems, notably problems in stringology. It has also appeared as an ad hoc hardness assumption. Second, we investigate some of these connections and provide new reductions and other results. We also explain why replacing this assumption with the SETH might not be possible for some problems.<br />Comment: Extended abstract published in the proceedings of ICALP 2017. Full version published in TALG 2019

Details

Database :
arXiv
Journal :
ACM Transactions on Algorithms 2019
Publication Type :
Report
Accession number :
edsarx.1702.07669
Document Type :
Working Paper
Full Text :
https://doi.org/10.1145/3293465