Back to Search
Start Over
Phoretic Interactions Between Active Droplets
- Source :
- Phys. Rev. E 96, 032607 (2017)
- Publication Year :
- 2017
-
Abstract
- Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here we uncover a regime in which solute-gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as $F\sim {1/r^{2}}$. Our results show that the process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, $l=16\pm 3$~nm, which corresponds to the lengthscale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.<br />Comment: 5 pages, 4 figures
- Subjects :
- Condensed Matter - Soft Condensed Matter
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. E 96, 032607 (2017)
- Publication Type :
- Report
- Accession number :
- edsarx.1702.06765
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevE.96.032607