Back to Search Start Over

Critical radius and supremum of random spherical harmonics

Authors :
Feng, Renjie
Adler, Robert J.
Source :
Ann. Probab. 47 (2019), no. 2, 1162-1184
Publication Year :
2017

Abstract

We first consider {\it deterministic} immersions of the $d$-dimensional sphere into high dimensional Euclidean spaces, where the immersion is via spherical harmonics of level $n$. The main result of the article is the, a priori unexpected, fact that there is a uniform lower bound to the critical radius of the immersions as $n\to\infty$. This fact has immediate implications for {\it random} spherical harmonics with fixed $L^2$-norm. In particular, it leads to an exact and explicit formulae for the tail probability of their (large deviation) suprema by the tube formula, and also relates this to the expected Euler characteristic of their upper level sets.<br />Comment: 2 figures

Details

Database :
arXiv
Journal :
Ann. Probab. 47 (2019), no. 2, 1162-1184
Publication Type :
Report
Accession number :
edsarx.1702.02767
Document Type :
Working Paper