Back to Search Start Over

A Constructive Approach to High-dimensional Regression

Authors :
Huang, Jian
Jiao, Yuling
Liu, Yanyan
Lu, Xiliang
Publication Year :
2017

Abstract

We develop a constructive approach to estimating sparse, high-dimensional linear regression models. The approach is a computational algorithm motivated from the KKT conditions for the $\ell_0$-penalized least squares solutions. It generates a sequence of solutions iteratively, based on support detection using primal and dual information and root finding. We refer to the algorithm as SDAR for brevity. Under a sparse Rieze condition on the design matrix and certain other conditions, we show that with high probability, the $\ell_2$ estimation error of the solution sequence decays exponentially to the minimax error bound in $O(\sqrt{J}\log(R))$ steps; and under a mutual coherence condition and certain other conditions, the $\ell_{\infty}$ estimation error decays to the optimal error bound in $O(\log(R))$ steps, where $J$ is the number of important predictors, $R$ is the relative magnitude of the nonzero target coefficients. Computational complexity analysis shows that the cost of SDAR is $O(np)$ per iteration. Moreover the oracle least squares estimator can be exactly recovered with high probability at the same cost if we know the sparsity level. We also consider an adaptive version of SDAR to make it more practical in applications. Numerical comparisons with Lasso, MCP and greedy methods demonstrate that SDAR is competitive with or outperforms them in accuracy and efficiency.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1701.05128
Document Type :
Working Paper