Back to Search Start Over

Near-infrared scattered light properties of the HR4796A dust ring: a measured scattering phase function from 13.6deg to 166.6deg

Authors :
Milli, Julien
Vigan, Arthur
Mouillet, David.
Lagrange, Anne-Marie
Augereau, Jean-Charles
Pinte, Christophe
Mawet, Dimitri
Schmid, Hans Martin
Boccaletti, Anthony
Matra, Luca
Kral, Quentin
Ertel, Steve
Chauvin, Gael
Bazzon, Andreas
Menard, Francois
Beuzit, Jean-Luc
Thalmann, Christian
Dominik, Carsten
Feldt, Markus
Henning, Thomas
Min, Michael
Girard, Julien H.
Galicher, Raphael
Bonnefoy, Mickael
Fusco, Thierry
de Boer, Jos
Janson, Markus
Maire, Anne-Lise
Mesa, Dino
Schlieder, Joshua E.
Source :
A&A 599, A108 (2017)
Publication Year :
2017

Abstract

HR4796A is surrounded by a debris disc, observed in scattered light as an inclined ring. Past observations raised several questions. First, a strong brightness asymmetry detected in polarized reflected light recently challenged our understanding of scattering by the dust particles in this system. Secondly, the morphology of the ring strongly suggests the presence of planets, although no planets have been detected to date. We obtained high-angular resolution coronagraphic images of the circumstellar environment around HR4796A with VLT/SPHERE during the commissioning of the instrument in May 2014 and during guaranteed-time observations in February 2015. The observations reveal for the first time the entire ring of dust, including the semi-minor axis that was previously hidden either behind the coronagraphic spot or in the speckle noise. We determine empirically the scattering phase function of the dust in the H band from 13.6deg to 166.6deg. It shows a prominent peak of forward scattering, never detected before, for scattering angles below 30deg. We analyse the reflectance spectra of the disc from the 0.95 to 1.6 microns, confirming the red colour of the dust, and derive detection limits on the presence of planetary mass objects. We confirm which side of the disc is inclined towards the Earth. The analysis of the phase function suggests that the dust population is dominated by particles much larger than the observation wavelength, of about 20 microns. Compact Mie grains of this size are incompatible with the spectral energy distribution of the disc, however the observed rise in scattering efficiency beyond 50deg points towards aggregates which could reconcile both observables. We do not detect companions orbiting the star but our high-contrast observations provide the most stringent constraints yet on the presence of planets responsible for the morphology of the dust.<br />Comment: 25 pages, 28 figures

Details

Database :
arXiv
Journal :
A&A 599, A108 (2017)
Publication Type :
Report
Accession number :
edsarx.1701.00750
Document Type :
Working Paper
Full Text :
https://doi.org/10.1051/0004-6361/201527838