Back to Search
Start Over
Quantum Friction in Arbitrarily Directed Motion
- Publication Year :
- 2016
-
Abstract
- Quantum friction, the electromagnetic fluctuation-induced frictional force decelerating an atom which moves past a macroscopic dielectric body, has so far eluded experimental evidence despite more than three decades of theoretical studies. Inspired by the recent finding that dynamical corrections to such an atom's internal dynamics are enhanced by one order of magnitude for vertical motion -- compared to the paradigmatic setup of parallel motion -- we generalize quantum friction calculations to arbitrary angles between the atom's direction of motion and the surface in front of which it moves. Motivated by the disagreement between quantum friction calculations based on Markovian quantum master equations and time-dependent perturbation theory, we carry out our derivations of the quantum frictional force for arbitrary angles employing both methods and compare them.<br />Comment: 12 pages, 1 figure, 1 table
- Subjects :
- Quantum Physics
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1612.01715
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevA.95.052510