Back to Search Start Over

Quantum Friction in Arbitrarily Directed Motion

Authors :
Klatt, J.
Farias, M. B.
Dalvit, D. A. R.
Buhmann, S. Y.
Publication Year :
2016

Abstract

Quantum friction, the electromagnetic fluctuation-induced frictional force decelerating an atom which moves past a macroscopic dielectric body, has so far eluded experimental evidence despite more than three decades of theoretical studies. Inspired by the recent finding that dynamical corrections to such an atom's internal dynamics are enhanced by one order of magnitude for vertical motion -- compared to the paradigmatic setup of parallel motion -- we generalize quantum friction calculations to arbitrary angles between the atom's direction of motion and the surface in front of which it moves. Motivated by the disagreement between quantum friction calculations based on Markovian quantum master equations and time-dependent perturbation theory, we carry out our derivations of the quantum frictional force for arbitrary angles employing both methods and compare them.<br />Comment: 12 pages, 1 figure, 1 table

Subjects

Subjects :
Quantum Physics

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1612.01715
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevA.95.052510