Back to Search
Start Over
Deep Pyramidal Residual Networks with Separated Stochastic Depth
- Publication Year :
- 2016
-
Abstract
- On general object recognition, Deep Convolutional Neural Networks (DCNNs) achieve high accuracy. In particular, ResNet and its improvements have broken the lowest error rate records. In this paper, we propose a method to successfully combine two ResNet improvements, ResDrop and PyramidNet. We confirmed that the proposed network outperformed the conventional methods; on CIFAR-100, the proposed network achieved an error rate of 16.18% in contrast to PiramidNet achieving that of 18.29% and ResNeXt 17.31%.
- Subjects :
- Computer Science - Computer Vision and Pattern Recognition
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1612.01230
- Document Type :
- Working Paper