Back to Search Start Over

Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation

Authors :
Caballero, Jose
Ledig, Christian
Aitken, Andrew
Acosta, Alejandro
Totz, Johannes
Wang, Zehan
Shi, Wenzhe
Publication Year :
2016

Abstract

Convolutional neural networks have enabled accurate image super-resolution in real-time. However, recent attempts to benefit from temporal correlations in video super-resolution have been limited to naive or inefficient architectures. In this paper, we introduce spatio-temporal sub-pixel convolution networks that effectively exploit temporal redundancies and improve reconstruction accuracy while maintaining real-time speed. Specifically, we discuss the use of early fusion, slow fusion and 3D convolutions for the joint processing of multiple consecutive video frames. We also propose a novel joint motion compensation and video super-resolution algorithm that is orders of magnitude more efficient than competing methods, relying on a fast multi-resolution spatial transformer module that is end-to-end trainable. These contributions provide both higher accuracy and temporally more consistent videos, which we confirm qualitatively and quantitatively. Relative to single-frame models, spatio-temporal networks can either reduce the computational cost by 30% whilst maintaining the same quality or provide a 0.2dB gain for a similar computational cost. Results on publicly available datasets demonstrate that the proposed algorithms surpass current state-of-the-art performance in both accuracy and efficiency.<br />Comment: Changes: * Uploaded Vid4 results (footnote 1). * Added references [14, 29] as spatial-transformer prior art. * Fixed typos

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1611.05250
Document Type :
Working Paper