Back to Search Start Over

Low pH, high salinity: too much for Microbial Fuel Cells?

Authors :
Jannelli, Nicole
Nastro, Rosa Anna
Cigolotti, Viviana
Minutillo, Mariagiovanna
Falcucci, Giacomo
Publication Year :
2016

Abstract

Twelve single chambered, air-cathode Tubular Microbial Fuel Cells (TMFCs) have been filled up with fruit and vegetable residues. The anodes were realized by means of a carbon fiber brush, while the cathodes were realized through a graphite-based porous ceramic disk with Nafion membranes (117 Dupont). The performances in terms of polarization curves and power production were assessed according to different operating conditions: percentage of solid substrate water dilution, adoption of freshwater and a 35mg/L NaCl water solution and, finally, the effect of an initial potentiostatic growth. All TMFCs operated at low pH (pH$=3.0 \pm 0.5$), as no pH amendment was carried out. Despite the harsh environmental conditions, our TMFCs showed a Power Density (PD) ranging from 20 to 55~mW/m$^2 \cdot$kg$_{\text{waste}}$ and a maximum CD of 20~mA/m$^2 \cdot$kg$_{\text{waste}}$, referred to the cathodic surface. COD removal after a $28-$day period was about $45 \%$. The remarkably low pH values as well as the fouling of Nafion membrane very likely limited TMFC performances. However, a scale-up estimation of our reactors provides interesting values in terms of power production, compared to actual anaerobic digestion plants. These results encourage further studies to characterize the graphite-based porous ceramic cathodes and to optimize the global TMFC performances, as they may provide a valid and sustainable alternative to anaerobic digestion technologies.<br />Comment: 13 pages, 10 Figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1611.02735
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.apenergy.2016.07.079