Back to Search
Start Over
Flexible Bayesian additive joint models with an application to type 1 diabetes research
- Publication Year :
- 2016
-
Abstract
- The joint modeling of longitudinal and time-to-event data is an important tool of growing popularity to gain insights into the association between a biomarker and an event process. We develop a general framework of flexible additive joint models that allows the specification of a variety of effects, such as smooth nonlinear, time-varying and random effects, in the longitudinal and survival parts of the models. Our extensions are motivated by the investigation of the relationship between fluctuating disease-specific markers, in this case autoantibodies, and the progression to the autoimmune disease type 1 diabetes. By making use of Bayesian P-splines we are in particular able to capture highly nonlinear subject-specific marker trajectories as well as a time-varying association between the marker and the event process allowing new insights into disease progression. The model is estimated within a Bayesian framework and implemented in the R-package bamlss.
- Subjects :
- Statistics - Methodology
Statistics - Applications
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1611.01485
- Document Type :
- Working Paper