Back to Search
Start Over
Constructing Tight Gabor Frames Using CAZAC Sequences
- Publication Year :
- 2016
-
Abstract
- The construction of finite tight Gabor frames plays an important role in many applications. These applications include significant ones in signal and image processing. We explore when constant amplitude zero autocorrelation (CAZAC) sequences can be used to generate tight Gabor frames. The main theorem uses Janssen's representation and the zeros of the discrete periodic ambiguity function to give necessary and sufficient conditions for determining whether any Gabor frame is tight. The relevance of the theorem depends significantly on the construction of examples. These examples are necessarily intricate, and to a large extent, depend on CAZAC sequences. Finally, we present an alternative method for determining whether a Gabor system yields a tight frame. This alternative method does not prove tightness using the main theorem, but instead uses the Gram matrix of the Gabor system.<br />Comment: 26 pages
- Subjects :
- Mathematics - Functional Analysis
42C15, 42C40
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1611.00818
- Document Type :
- Working Paper