Back to Search Start Over

Neural-like computing with populations of superparamagnetic basis functions

Authors :
Mizrahi, Alice
Hirtzlin, Tifenn
Fukushima, Akio
Kubota, Hitoshi
Yuasa, Shinji
Grollier, Julie
Querlioz, Damien
Publication Year :
2016

Abstract

In neuroscience, population coding theory demonstrates that neural assemblies can achieve fault-tolerant information processing. Mapped to nanoelectronics, this strategy could allow for reliable computing with scaled-down, noisy, imperfect devices. Doing so requires that the population components form a set of basis functions in terms of their response functions to inputs, offering a physical substrate for calculating. For this purpose, the responses of the nanodevices should be non-linear, and each tuned to different values of the input. These strong requirements have prevented a demonstration of population coding with nanodevices. Here, we show that nanoscale magnetic tunnel junctions can be assembled to meet these requirements. We demonstrate experimentally that a population of nine junctions can implement a basis set of functions, providing the data to achieve, for example, the generation of cursive letters. We design hybrid magnetic-CMOS systems based on interlinked populations of junctions and show that they can learn to realize non-linear variability-resilient transformations with a low imprint area and low power.<br />Comment: 5 figures

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1610.09394
Document Type :
Working Paper