Back to Search
Start Over
Early observations of the nearby type Ia supernova SN 2015F
- Publication Year :
- 2016
-
Abstract
- We present photometry and time-series spectroscopy of the nearby type Ia supernova (SN Ia) SN 2015F over $-16$ days to $+80$ days relative to maximum light, obtained as part of the Public ESO Spectroscopic Survey of Transient Objects (PESSTO). SN 2015F is a slightly sub-luminous SN Ia with a decline rate of $\Delta m15(B)=1.35 \pm 0.03$ mag, placing it in the region between normal and SN 1991bg-like events. Our densely-sampled photometric data place tight constraints on the epoch of first light and form of the early-time light curve. The spectra exhibit photospheric C II $\lambda 6580$ absorption until $-4$ days, and high-velocity Ca II is particularly strong at $<-10$ days at expansion velocities of $\simeq$23000\kms. At early times, our spectral modelling with syn++ shows strong evidence for iron-peak elements (Fe II, Cr II, Ti II, and V II) expanding at velocities $>14000$ km s$^{-1}$, suggesting mixing in the outermost layers of the SN ejecta. Although unusual in SN Ia spectra, including V II in the modelling significantly improves the spectral fits. Intriguingly, we detect an absorption feature at $\sim$6800 \AA\ that persists until maximum light. Our favoured explanation for this line is photospheric Al II, which has never been claimed before in SNe Ia, although detached high-velocity C II material could also be responsible. In both cases the absorbing material seems to be confined to a relatively narrow region in velocity space. The nucleosynthesis of detectable amounts of Al II would argue against a low-metallicity white dwarf progenitor. We also show that this 6800 \AA\ feature is weakly present in other normal SN Ia events, and common in the SN 1991bg-like sub-class.<br />Comment: Accepted for publication in MNRAS
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1609.04465
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1093/mnras/stw2678