Back to Search
Start Over
Human Body Orientation Estimation using Convolutional Neural Network
- Publication Year :
- 2016
-
Abstract
- Personal robots are expected to interact with the user by recognizing the user's face. However, in most of the service robot applications, the user needs to move himself/herself to allow the robot to see him/her face to face. To overcome such limitations, a method for estimating human body orientation is required. Previous studies used various components such as feature extractors and classification models to classify the orientation which resulted in low performance. For a more robust and accurate approach, we propose the light weight convolutional neural networks, an end to end system, for estimating human body orientation. Our body orientation estimation model achieved 81.58% and 94% accuracy with the benchmark dataset and our own dataset respectively. The proposed method can be used in a wide range of service robot applications which depend on the ability to estimate human body orientation. To show its usefulness in service robot applications, we designed a simple robot application which allows the robot to move towards the user's frontal plane. With this, we demonstrated an improved face detection rate.
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1609.01984
- Document Type :
- Working Paper