Back to Search
Start Over
Simple weak modules for the fixed point subalgebra of the Heisenberg vertex operator algebra of rank $1$ by an automorphism of order $2$ and Whittaker vectors
- Source :
- Proc. Amer. Math. Soc. 145 (2017), 4127--4140
- Publication Year :
- 2016
-
Abstract
- Let $M(1)$ be the vertex operator algebra with the Virasoro element $\omega$ associated to the Heisenberg algebra of rank $1$ and let $M(1)^{+}$ be the subalgebra of $M(1)$ consisting of the fixed points of an automorphism of $M(1)$ of order $2$. We classify the simple weak $M(1)^{+}$-modules with a non-zero element $w$ such that for some integer $s\geq 2$, $\omega_i w\in{\mathbb C}w$ ($i=\lfloor s/2\rfloor+1,\lfloor s/2\rfloor+2,\ldots,s-1$), $\omega_{s}w\in{\mathbb C}^{\times}w$, and $\omega_i w=0$ for all $i>s$. The result says that any such simple weak $M(1)^{+}$-module is isomorphic to some simple weak $M(1)$-module or to some $\theta$-twisted simple weak $M(1)$-module.<br />Comment: 20 pages; typos corrected
- Subjects :
- Mathematics - Quantum Algebra
17B69
Subjects
Details
- Database :
- arXiv
- Journal :
- Proc. Amer. Math. Soc. 145 (2017), 4127--4140
- Publication Type :
- Report
- Accession number :
- edsarx.1608.07890
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1090/proc/13767