Back to Search
Start Over
Random Forest for Label Ranking
- Publication Year :
- 2016
-
Abstract
- Label ranking aims to learn a mapping from instances to rankings over a finite number of predefined labels. Random forest is a powerful and one of the most successful general-purpose machine learning algorithms of modern times. In this paper, we present a powerful random forest label ranking method which uses random decision trees to retrieve nearest neighbors. We have developed a novel two-step rank aggregation strategy to effectively aggregate neighboring rankings discovered by the random forest into a final predicted ranking. Compared with existing methods, the new random forest method has many advantages including its intrinsically scalable tree data structure, highly parallel-able computational architecture and much superior performance. We present extensive experimental results to demonstrate that our new method achieves the highly competitive performance compared with state-of-the-art methods for datasets with complete ranking and datasets with only partial ranking information.<br />Comment: 28 pages, 4 figures,accepted to Expert Systems With Applications in June 2018
- Subjects :
- Computer Science - Learning
Statistics - Machine Learning
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1608.07710
- Document Type :
- Working Paper