Back to Search
Start Over
Hydrodynamic modeling of a pure-glue initial scenario in high-energy hadron and heavy-ion collisions
- Publication Year :
- 2016
-
Abstract
- Partonic matter produced in the early stage of ultrarelativistic nucleus-nucleus collisions is assumed to be composed mainly of gluons, and quarks and antiquarks are produced at later times. The comparable hydrodynamic simulations of heavy-ion collisions for (2+1)-flavor and Yang-Mills equations of state performed by using three different hydrodynamic codes are presented. Assuming slow chemical equilibration of quarks, the spectra and elliptic flows of thermal dileptons and photons are calculated for central Pb+Pb collisions at the LHC energy of $\sqrt{s_{_{\rm NN}}} = 2.76$ TeV. It is shown that a suppression of quarks at early times leads to a significant reduction of the yield of the thermal dileptons, but only to a rather modest suppression of the $p_T$-distribution of direct photons. It is demonstrated that an enhancement of photon and dilepton elliptic flows might serve as a promising signature of the pure-glue initial state. Calculations based on Bjorken hydrodynamics suggest that collisions of small systems at intermediate energies available at RHIC or future FAIR facilities may show stronger effects associated with initial pure gluodynamic evolution.<br />Comment: 14 pages, 12 figures. Proceedings for 54th International Winter Meeting on Nuclear Physics, 25-29 January 2016, Bormio, Italy
- Subjects :
- Nuclear Theory
High Energy Physics - Phenomenology
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1608.04318
- Document Type :
- Working Paper