Back to Search Start Over

Structural Emergency Control Paradigm

Authors :
Vu, Thanh Long
Chatzivasileiadis, Spyros
Chiang, Hsiao-Dong
Turitsyn, Konstantin
Source :
IEEE Journal on Emerging and Selected Topics in Circuits and Systems ( Volume: 7, Issue: 3, Sept. 2017 )
Publication Year :
2016

Abstract

Power grids normally operate at some stable operating condition where power supply and demand are balanced. In response to emergency situations, load shedding is a prevailing approach where local protective devices are activated to cut a suitable amount of load to quickly rebalance the supply demand and hopefully stabilize the system. This traditional emergency control results in interrupted service with severe economic damage to customers. Also, such control is usually less effective due to the lack of coordination among protective devices. In this paper, we propose a novel structural emergency control to render post-fault dynamics from the critical/emergency fault-cleared state to the stable equilibrium point. This is a new control paradigm that does not rely on any continuous measurement or load shedding, as in the classical setup. Instead, the grid is made stable by discretely relocating the equilibrium point and its stability region such that the system is consecutively attracted from the fault-cleared state back to the original equilibrium point. The proposed control is designed by solving linear and convex optimization problems, making it possibly scalable to large-scale power grids. Finally, this emergency control scheme can be implemented by exploiting transmission facilities available on the existing grids.

Details

Database :
arXiv
Journal :
IEEE Journal on Emerging and Selected Topics in Circuits and Systems ( Volume: 7, Issue: 3, Sept. 2017 )
Publication Type :
Report
Accession number :
edsarx.1607.08183
Document Type :
Working Paper
Full Text :
https://doi.org/10.1109/JETCAS.2017.2696358