Back to Search Start Over

Mind your Ps and Qs: the Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars

Authors :
Moe, Maxwell
Di Stefano, Rosanne
Publication Year :
2016

Abstract

We compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, common proper motion, etc. Each observational technique is sensitive to companions across a narrow parameter space of orbital periods P and mass ratios q = M_comp/M_1. After combining the samples from the various surveys and correcting for their respective selection effects, we find the properties of companions to O-type and B-type main-sequence (MS) stars differ among three regimes. First, at short orbital periods P < 20 days (separations a < 0.4 AU), the binaries have small eccentricities e < 0.4, favor modest mass ratios <q> = 0.5, and exhibit a small excess of twins q > 0.95. Second, the companion frequency peaks at intermediate periods log P (days) = 3.5 (a = 10 AU), where the binaries have mass ratios weighted toward small values q = 0.2-0.3 and follow a Maxwellian "thermal" eccentricity distribution. Finally, companions with long orbital periods log P (days) = 5.5-7.5 (a = 200-5,000 AU) are outer tertiary components in hierarchical triples, and have a mass ratio distribution across q = 0.1-1.0 that is nearly consistent with random pairings drawn from the initial mass function. We discuss these companion distributions and properties in the context of binary star formation and evolution. We also reanalyze the binary statistics of solar-type MS primaries, taking into account that (30+/-10)% of single-lined spectroscopic binaries likely contain white dwarf companions instead of low-mass stellar secondaries. The mean frequency of stellar companions with q > 0.1 and log P (days) < 8.0 per primary increases from 0.50+/-0.04 for solar-type MS primaries to 2.1+/-0.3 for O-type MS primaries. We fit joint probability density functions f(M_1,q,P,e) to the corrected distributions, which can be incorporated into binary population synthesis studies.<br />Comment: Accepted in ApJS; this version includes the updated figures, text, and equations as it appears in the accepted version; a Monte Carlo code that generates a population of zero-age MS single stars and binaries according to the corrected joint distribution f(M_1,q,P,e) is available upon request via email

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1606.05347
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/1538-4365/aa6fb6