Back to Search Start Over

Bernstein dual-Petrov-Galerkin method: application to 2D time fractional diffusion equation

Authors :
Jani, Mostafa
Javadi, Shahnam
Babolian, Esmail
Bhatta, Dambaru
Publication Year :
2016

Abstract

In this paper, we develop a Bernstein dual-Petrov-Galerkin method for the numerical simulation of a two-dimensional fractional diffusion equation. A spectral discretization is applied by introducing suitable combinations of dual Bernstein polynomials as the test functions and the Bernstein polynomials as the trial ones. We derive the exact sparse operational matrix of differentiation for the dual Bernstein basis which provides a matrix based approach for the spatial discretization. It is shown that the method leads to banded linear systems that can be solved efficiently. The stability and convergence of the proposed method is discussed. Finally, some numerical examples are provided to support the theoretical claims and to show the accuracy and efficiency of the method.<br />Comment: 18 pages, Accepted for publication in Computational and Applied Mathematics (Springer)

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1605.06744
Document Type :
Working Paper
Full Text :
https://doi.org/10.1007/s40314-017-0455-8