Back to Search
Start Over
A Non-associative Baker-Campbell-Hausdorff formula
- Publication Year :
- 2016
-
Abstract
- We address the problem of constructing the non-associative version of the Dynkin form of the Baker-Campbell-Hausdorff formula; that is, expressing $\log (\exp (x)\exp(y))$, where $x$ and $y$ are non-associative variables, in terms of the Shestakov-Umirbaev primitive operations. In particular, we obtain a recursive expression for the Magnus expansion of the Baker-Campbell-Hausdorff series and an explicit formula in degrees smaller than 5. Our main tool is a non-associative version of the Dynkin-Specht-Wever Lemma. A construction of Bernouilli numbers in terms of binary trees is also recovered.<br />Comment: 15 pages
- Subjects :
- Mathematics - Rings and Algebras
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1605.00953
- Document Type :
- Working Paper