Back to Search
Start Over
Hybrid Architectures with Few-Bit ADC Receivers: Achievable Rates and Energy-Rate Tradeoffs
- Publication Year :
- 2016
-
Abstract
- Hybrid analog/digital architectures and receivers with low-resolution analog-to-digital converters (ADCs) are two low power solutions for wireless systems with large antenna arrays, such as millimeter wave and massive MIMO systems. Most prior work represents two extreme cases in which either a small number of RF chains with full-resolution ADCs, or low resolution ADC with a number of RF chains equal to the number of antennas is assumed. In this paper, a generalized hybrid architecture with a small number of RF chains and finite number of ADC bits is proposed. For this architecture, achievable rates with channel inversion and SVD based transmission methods are derived. Results show that the achievable rate is comparable to that obtained by full-precision ADC receivers at low and medium SNRs. A trade-off between the achievable rate and power consumption for different numbers of bits and RF chains is devised. This enables us to draw some conclusions on the number of ADC bits needed to maximize the system energy efficiency. Numerical simulations show that coarse ADC quantization is optimal under various system configurations. This means that hybrid combining with coarse quantization achieves better energy-rate trade-off compared to both hybrid combining with full-resolutions ADCs and 1-bit ADC combining.<br />Comment: 30 pages, 8 figures, submitted to IEEE Transactions on Wireless Communications
- Subjects :
- Computer Science - Information Theory
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1605.00668
- Document Type :
- Working Paper