Back to Search
Start Over
Cohomology of $\mathfrak {aff}(1)$ and $\mathfrak {aff}(1|1)$ acting on the space of $n$-ary differential operators on the superspace $\mathbb{R}^{1|1}$
- Publication Year :
- 2016
-
Abstract
- We consider the $\mu$-densities spaces $\mathcal{F}_\mu$ with $\mu\in\mathbb{R}$, we compute the space $\mathrm{H}^1_\mathrm{diff}(\mathfrak{aff}(1),\mathrm{D}_{\lambda,\mu})$ where $\lambda=(\lambda_1,\dots,\lambda_n)\in\mathbb{R}^n$ and $\mathrm{D}_{\lambda,\mu}$ is the space of $n$-ary differential operators from $\mathcal{F}_{\lambda_1}\otimes\cdots\otimes\mathcal{F}_{\lambda_n}$ to $\mathcal{F}_\mu$. We also compute the super analog space $\mathrm{H}^1_\mathrm{diff}(\mathfrak{aff}(1|1),\mathfrak{D}_{\lambda,\mu})$.<br />Comment: 14 pages. arXiv admin note: text overlap with arXiv:0911.2769, arXiv:1512.02847
- Subjects :
- Mathematics - Representation Theory
17B56, 17B10, 17B66
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1604.08325
- Document Type :
- Working Paper