Back to Search
Start Over
An optimal first order method based on optimal quadratic averaging
- Publication Year :
- 2016
-
Abstract
- In a recent paper, Bubeck, Lee, and Singh introduced a new first order method for minimizing smooth strongly convex functions. Their geometric descent algorithm, largely inspired by the ellipsoid method, enjoys the optimal linear rate of convergence. We show that the same iterate sequence is generated by a scheme that in each iteration computes an optimal average of quadratic lower-models of the function. Indeed, the minimum of the averaged quadratic approaches the true minimum at an optimal rate. This intuitive viewpoint reveals clear connections to the original fast-gradient methods and cutting plane ideas, and leads to limited-memory extensions with improved performance.<br />Comment: 23 pages
- Subjects :
- Mathematics - Optimization and Control
90C25, 90C06
Subjects
Details
- Database :
- arXiv
- Publication Type :
- Report
- Accession number :
- edsarx.1604.06543
- Document Type :
- Working Paper