Back to Search Start Over

Local Binary Pattern for Word Spotting in Handwritten Historical Document

Authors :
Dey, Sounak
Nicolaou, Anguelos
Llados, Josep
Pal, Umapada
Publication Year :
2016

Abstract

Digital libraries store images which can be highly degraded and to index this kind of images we resort to word spot- ting as our information retrieval system. Information retrieval for handwritten document images is more challenging due to the difficulties in complex layout analysis, large variations of writing styles, and degradation or low quality of historical manuscripts. This paper presents a simple innovative learning-free method for word spotting from large scale historical documents combining Local Binary Pattern (LBP) and spatial sampling. This method offers three advantages: firstly, it operates in completely learning free paradigm which is very different from unsupervised learning methods, secondly, the computational time is significantly low because of the LBP features which are very fast to compute, and thirdly, the method can be used in scenarios where annotations are not available. Finally we compare the results of our proposed retrieval method with the other methods in the literature.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1604.05907
Document Type :
Working Paper