Back to Search Start Over

Counting rational points of an algebraic variety over finite fields

Authors :
Hu, Shuangnian
Hong, Shaofang
Qin, Xiaoer
Publication Year :
2016

Abstract

Let $\mathbb{F}_q$ denote the finite field of odd characteristic $p$ with $q$ elements ($q=p^{n},n\in \mathbb{N} $) and $\mathbb{F}_q^*$ represent the nonzero elements of $\mathbb{F}_{q}$. In this paper, by using the Smith normal form we give an explicit formula for the number of rational points of the algebraic variety defined by the following system of equations over $\mathbb{F}_{q}$: \begin{align*} {\left\{\begin{array}{rl} &\sum_{i=1}^{r_1}a_{1i}x_1^{e^{(1)}_{i1}} ...x_{n_1}^{e^{(1)}_{i,n_1}} +\sum_{i=r_1+1}^{r_2}a_{1i}x_1^{e^{(1)}_{i1}} ...x_{n_2}^{e^{(1)}_{i,n_2}}-b_1=0,\\ &\sum_{j=1}^{r_3}a_{2j}x_1^{e^{(2)}_{j1}} ...x_{n_3}^{e^{(2)}_{j,n_3}} +\sum_{j=r_3+1}^{r_4}a_{2j}x_1^{e^{(2)}_{j1}} ...x_{n_4}^{e^{(2)}_{j,n_4}}-b_2=0, \end{array}\right.} \end{align*} where the integers $1\leq r_1<r_2$, $1\leq r_3<r_4$, $1\le n_1<n_2$, $1\le n_3<n_4$, $n_1\leq n_3$, $b_1, b_2\in \mathbb{F}_{q}$, $a_{1i}\in \mathbb{F}_{q}^{*}$ $(1\leq i\leq r_2)$, $a_{2j}\in \mathbb{F}_{q}^{*}$$(1\leq j\leq r_4)$ and the exponent of each variable is a positive integer. An example is also presented to demonstrate the validity of the main result.<br />Comment: 24 pages. arXiv admin note: text overlap with arXiv:1603.00760

Subjects

Subjects :
Mathematics - Number Theory

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1603.01828
Document Type :
Working Paper