Back to Search Start Over

A consequence of Greenberg's generalized conjecture on Iwasawa invariants of $\mathbb{Z}_p$-extensions

Authors :
Kataoka, Takenori
Source :
Journal of Number Theory, Volume 172 (2017), 200-233
Publication Year :
2016

Abstract

For a prime number $p$ and a number field $k$, let $\tilde{k}$ be the compositum of all $\mathbb{Z}_p$-extensions of $k$. Greenberg's Generalized Conjecture (GGC) claims the pseudo-nullity of the unramified Iwasawa module $X(\tilde{k})$ of $\tilde{k}$. It is known that, when $k$ is an imaginary quadratic field, GGC has a consequence on the Iwasawa invariants associated to $\mathbb{Z}_p$-extensions of $k$. In this paper, we partially generalize it to arbitrary number fields $k$.<br />Comment: 28 pages

Subjects

Subjects :
Mathematics - Number Theory
11R23

Details

Database :
arXiv
Journal :
Journal of Number Theory, Volume 172 (2017), 200-233
Publication Type :
Report
Accession number :
edsarx.1602.07916
Document Type :
Working Paper