Back to Search
Start Over
A consequence of Greenberg's generalized conjecture on Iwasawa invariants of $\mathbb{Z}_p$-extensions
- Source :
- Journal of Number Theory, Volume 172 (2017), 200-233
- Publication Year :
- 2016
-
Abstract
- For a prime number $p$ and a number field $k$, let $\tilde{k}$ be the compositum of all $\mathbb{Z}_p$-extensions of $k$. Greenberg's Generalized Conjecture (GGC) claims the pseudo-nullity of the unramified Iwasawa module $X(\tilde{k})$ of $\tilde{k}$. It is known that, when $k$ is an imaginary quadratic field, GGC has a consequence on the Iwasawa invariants associated to $\mathbb{Z}_p$-extensions of $k$. In this paper, we partially generalize it to arbitrary number fields $k$.<br />Comment: 28 pages
- Subjects :
- Mathematics - Number Theory
11R23
Subjects
Details
- Database :
- arXiv
- Journal :
- Journal of Number Theory, Volume 172 (2017), 200-233
- Publication Type :
- Report
- Accession number :
- edsarx.1602.07916
- Document Type :
- Working Paper