Back to Search Start Over

TRI\`EST: Counting Local and Global Triangles in Fully-dynamic Streams with Fixed Memory Size

Authors :
De Stefani, Lorenzo
Epasto, Alessandro
Riondato, Matteo
Upfal, Eli
Publication Year :
2016

Abstract

We present TRI\`EST, a suite of one-pass streaming algorithms to compute unbiased, low-variance, high-quality approximations of the global and local (i.e., incident to each vertex) number of triangles in a fully-dynamic graph represented as an adversarial stream of edge insertions and deletions. Our algorithms use reservoir sampling and its variants to exploit the user-specified memory space at all times. This is in contrast with previous approaches which use hard-to-choose parameters (e.g., a fixed sampling probability) and offer no guarantees on the amount of memory they will use. We show a full analysis of the variance of the estimations and novel concentration bounds for these quantities. Our experimental results on very large graphs show that TRI\`EST outperforms state-of-the-art approaches in accuracy and exhibits a small update time.<br />Comment: 49 pages, 7 figures, extended version of the paper appeared at ACM KDD'16

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1602.07424
Document Type :
Working Paper