Back to Search Start Over

Reconciling dwarf galaxies with LCDM cosmology: Simulating a realistic population of satellites around a Milky Way-mass galaxy

Authors :
Wetzel, Andrew R.
Hopkins, Philip F.
Kim, Ji-hoon
Faucher-Giguere, Claude-Andre
Keres, Dusan
Quataert, Eliot
Publication Year :
2016

Abstract

Low-mass "dwarf" galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on FIRE (Feedback in Realistic Environments). This simulation models the formation of a MW-mass galaxy to z = 0 within LCDM cosmology, including dark matter, gas, and stars at unprecedented resolution: baryon particle mass of 7070 Msun with gas kernel/softening that adapts down to 1 pc (with a median of 25 - 60 pc at z = 0). Latte was simulated using the GIZMO code with a mesh-free method for accurate hydrodynamics and the FIRE-2 model for star formation and explicit feedback within a multi-phase interstellar medium. For the first time, Latte self-consistently resolves the spatial scales corresponding to half-light radii of dwarf galaxies that form around a MW-mass host down to Mstar > 10^5 Msun. Latte's population of dwarf galaxies agrees with the LG across a broad range of properties: (1) distributions of stellar masses and stellar velocity dispersions (dynamical masses), including their joint relation; (2) the mass-metallicity relation; and (3) a diverse range of star-formation histories, including their mass dependence. Thus, Latte produces a realistic population of dwarf galaxies at Mstar > 10^5 Msun that does not suffer from the "missing satellites" or "too big to fail" problems of small-scale structure formation. We conclude that baryonic physics can reconcile observed dwarf galaxies with standard LCDM cosmology.<br />Comment: 7 pages, 5 figures. Accepted for publication in ApJ Letters. Several updates, including: (1) fixed a bug in halo finder, now identifies 13 satellite galaxies and more subhalos in the baryonic simulation; (2) fixed a minor bug in the feedback coupling and reran the simulation, resulting in a somewhat lower-mass host galaxy; (3) Fig 2 now shows stellar velocity dispersion profiles of satellites

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1602.05957
Document Type :
Working Paper
Full Text :
https://doi.org/10.3847/2041-8205/827/2/L23