Back to Search Start Over

Triplet Similarity Embedding for Face Verification

Authors :
Sankaranarayanan, Swami
Alavi, Azadeh
Chellappa, Rama
Publication Year :
2016

Abstract

In this work, we present an unconstrained face verification algorithm and evaluate it on the recently released IJB-A dataset that aims to push the boundaries of face verification methods. The proposed algorithm couples a deep CNN-based approach with a low-dimensional discriminative embedding learnt using triplet similarity constraints in a large margin fashion. Aside from yielding performance improvement, this embedding provides significant advantages in terms of memory and post-processing operations like hashing and visualization. Experiments on the IJB-A dataset show that the proposed algorithm outperforms state of the art methods in verification and identification metrics, while requiring less training time.

Details

Database :
arXiv
Publication Type :
Report
Accession number :
edsarx.1602.03418
Document Type :
Working Paper