Back to Search Start Over

Ultrafast THz Field Control of Electronic and Structural Interactions in Vanadium Dioxide

Authors :
Gray, A. X.
Hoffmann, M. C.
Jeong, J.
Aetukuri, N. P.
Zhu, D.
Hwang, H. Y.
Brandt, N. C.
Wen, H.
Sternbach, A. J.
Bonetti, S.
Reid, A. H.
Kukreja, R.
Graves, C.
Wang, T.
Granitzka, P.
Chen, Z.
Higley, D. J.
Chase, T.
Jal, E.
Abreu, E.
Liu, M. K.
Weng, T. -C.
Sokaras, D.
Nordlund, D.
Chollet, M.
Lemke, H.
Glownia, J.
Trigo, M.
Zhu, Y.
Ohldag, H.
Freeland, J. W.
Samant, M. G.
Berakdar, J.
Averitt, R. D.
Nelson, K. A.
Parkin, S. S. P.
Dürr, H. A.
Source :
Phys. Rev. B 98, 045104 (2018)
Publication Year :
2016

Abstract

Vanadium dioxide, an archetypal correlated-electron material, undergoes an insulator-metal transition near room temperature that exhibits electron-correlation-driven and structurally-driven physics. Using ultrafast optical spectroscopy and x-ray scattering we show that these processes can be disentangled in the time domain. Specifically, following intense sub-picosecond electric-field excitation, a partial collapse of the insulating gap occurs within the first ps. Subsequently, this electronic reconfiguration initiates a change in lattice symmetry taking place on a slower timescale. We identify the kinetic energy increase of electrons tunneling in the strong electric field as the driving force, illustrating a novel method to control electronic interactions in correlated materials on an ultrafast timescale.

Details

Database :
arXiv
Journal :
Phys. Rev. B 98, 045104 (2018)
Publication Type :
Report
Accession number :
edsarx.1601.07490
Document Type :
Working Paper
Full Text :
https://doi.org/10.1103/PhysRevB.98.045104