Back to Search
Start Over
Shedding Light on Diphoton Resonances
- Source :
- Phys. Rev. D 93, 115023 (2016)
- Publication Year :
- 2015
-
Abstract
- The experimental and theoretical implications of heavy digauge boson resonances that couple to, or are comprised of, new charged and strongly interacting matter are investigated. Observation and measurement of ratios of the resonant digauge boson channels $WW$, $ZZ$, $\gamma \gamma$, $Z \gamma$, and $gg$ in the form of dijets, provide a rather direct -- and for some ratios a rather robust -- probe of the gauge representations of the new matter. For a spin-zero resonance with the quantum numbers of the vacuum, the ratios of resonant $WW$ and $ZZ$ to $\gamma \gamma$ channels, as well as the longitudinal versus transverse polarization fractions in the $WW$ and $ZZ$ channels, provide probes for possible mixing with the Higgs boson, while di-Higgs and ditop resonant channels, $hh$ and $tt$, provide somewhat less sensitivity. We present a survey of possible underlying models for digauge boson resonances by considering various limits for the mass of the new charged and strongly interacting matter fields as well as the confinement scale of new hypergauge interactions under which they may also be charged. In these limits, resonances may be included as elementary weakly coupled spin-zero states or can correspond to hyperglueballs, hyperonia, or pseudoscalar hypermesons. For each of these cases, we make predictions for additional states that could be resonantly or pair produced and observed at the Large Hadron Collider or in future collider experiments. Heavy digauge boson resonances can provide a unified explanation for a number of small discrepancies and excesses in reported data from the Large Hadron Collider.<br />Comment: 32 pages, 4 figures. v2: Title changed, additional minor modifications in the text (conclusions unchanged), references added. v3: Minor modifications (conclusions unchanged), matches published version
- Subjects :
- High Energy Physics - Phenomenology
Subjects
Details
- Database :
- arXiv
- Journal :
- Phys. Rev. D 93, 115023 (2016)
- Publication Type :
- Report
- Accession number :
- edsarx.1512.07733
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1103/PhysRevD.93.115023