Back to Search
Start Over
Embedded eigenvalues of the Neumann problem in a strip with a box-shaped perturbation
- Source :
- Journal de Math\'ematiques Pures Appliqu\'ees, 112 (2018), 1-40
- Publication Year :
- 2015
-
Abstract
- We consider the spectral Neumann problem for the Laplace operator in an acoustic waveguide $\Pi_{l}^{\varepsilon}$ obtained from a straight unit strip by a low box-shaped perturbation of size $2l\times\varepsilon,$ where $\varepsilon>0$ is a small parameter. We prove the existence of the length parameter $l_{k}^{\varepsilon}=\pi k+O\left( \varepsilon\right) $ with any $k=1,2,3,...$ such that the waveguide $\Pi_{l_{k}^{\varepsilon}}^{\varepsilon }$ supports a trapped mode with an eigenvalue $\lambda_{k}^{\varepsilon}% =\pi^{2}-4\pi^{4}l^{2}\varepsilon^{2}+O\left( \varepsilon^{3}\right) $ embedded into the continuous spectrum. This eigenvalue is unique in the segment $\left[ 0,\pi^{2}\right] $ and is absent in the case $l\neq l_{k}^{\varepsilon}.$ The detection of this embedded eigenvalue is based on a criterion for trapped modes involving an artificial object, the augmented scattering matrix. The main technical difficulty is caused by corner points of the perturbed wall $\partial\Pi_{l}^{\varepsilon}$ and we discuss available generalizations for other piecewise smooth boundaries.<br />Comment: 36 pages, 6 figures
Details
- Database :
- arXiv
- Journal :
- Journal de Math\'ematiques Pures Appliqu\'ees, 112 (2018), 1-40
- Publication Type :
- Report
- Accession number :
- edsarx.1512.06891
- Document Type :
- Working Paper
- Full Text :
- https://doi.org/10.1016/j.matpur.2018.01.002