Back to Search Start Over

Poisson cohomology of scalar multidimensional Dubrovin-Novikov brackets

Authors :
Carlet, Guido
Casati, Matteo
Shadrin, Sergey
Source :
J. Geom. Phys. 114 (2017), 404-419
Publication Year :
2015

Abstract

We compute the Poisson cohomology of a scalar Poisson bracket of Dubrovin-Novikov type with $D$ independent variables. We find that the second and third cohomology groups are generically non-vanishing in $D>1$. Hence, in contrast with the $D=1$ case, the deformation theory in the multivariable case is non-trivial.<br />Comment: 23 pages. Typos corrected, add explicit form of homotopy contraction operator

Details

Database :
arXiv
Journal :
J. Geom. Phys. 114 (2017), 404-419
Publication Type :
Report
Accession number :
edsarx.1512.05744
Document Type :
Working Paper
Full Text :
https://doi.org/10.1016/j.geomphys.2016.12.008